Corpus GrippeCanadaV3

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Predictive validation of an influenza spread model.

Identifieur interne : 000333 ( Main/Exploration ); précédent : 000332; suivant : 000334

Predictive validation of an influenza spread model.

Auteurs : Ayaz Hyder [Canada] ; David L. Buckeridge ; Brian Leung

Source :

RBID : pubmed:23755236

Descripteurs français

English descriptors

Abstract

BACKGROUND

Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread.

METHODS AND FINDINGS

We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998-1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic.

CONCLUSIONS

Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive ability.


DOI: 10.1371/journal.pone.0065459
PubMed: 23755236


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Predictive validation of an influenza spread model.</title>
<author>
<name sortKey="Hyder, Ayaz" sort="Hyder, Ayaz" uniqKey="Hyder A" first="Ayaz" last="Hyder">Ayaz Hyder</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, McGill University, Montreal, Quebec, Canada. ayaz.hyder@yale.edu</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, McGill University, Montreal, Quebec</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Buckeridge, David L" sort="Buckeridge, David L" uniqKey="Buckeridge D" first="David L" last="Buckeridge">David L. Buckeridge</name>
</author>
<author>
<name sortKey="Leung, Brian" sort="Leung, Brian" uniqKey="Leung B" first="Brian" last="Leung">Brian Leung</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23755236</idno>
<idno type="pmid">23755236</idno>
<idno type="doi">10.1371/journal.pone.0065459</idno>
<idno type="wicri:Area/Main/Corpus">000351</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000351</idno>
<idno type="wicri:Area/Main/Curation">000351</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000351</idno>
<idno type="wicri:Area/Main/Exploration">000351</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Predictive validation of an influenza spread model.</title>
<author>
<name sortKey="Hyder, Ayaz" sort="Hyder, Ayaz" uniqKey="Hyder A" first="Ayaz" last="Hyder">Ayaz Hyder</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, McGill University, Montreal, Quebec, Canada. ayaz.hyder@yale.edu</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, McGill University, Montreal, Quebec</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Buckeridge, David L" sort="Buckeridge, David L" uniqKey="Buckeridge D" first="David L" last="Buckeridge">David L. Buckeridge</name>
</author>
<author>
<name sortKey="Leung, Brian" sort="Leung, Brian" uniqKey="Leung B" first="Brian" last="Leung">Brian Leung</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adolescent</term>
<term>Adult</term>
<term>Aged</term>
<term>Aged, 80 and over</term>
<term>Child</term>
<term>Child, Preschool</term>
<term>Computer Simulation</term>
<term>Disease Outbreaks</term>
<term>Forecasting</term>
<term>Humans</term>
<term>Infant</term>
<term>Influenza A virus (immunology)</term>
<term>Influenza A virus (pathogenicity)</term>
<term>Influenza Vaccines (administration & dosage)</term>
<term>Influenza, Human (epidemiology)</term>
<term>Influenza, Human (immunology)</term>
<term>Influenza, Human (prevention & control)</term>
<term>Influenza, Human (transmission)</term>
<term>Middle Aged</term>
<term>Models, Statistical</term>
<term>Public Health (statistics & numerical data)</term>
<term>Public Health (trends)</term>
<term>Quebec (epidemiology)</term>
<term>Reproducibility of Results</term>
<term>Time Factors</term>
<term>Vaccination</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adolescent</term>
<term>Adulte</term>
<term>Adulte d'âge moyen</term>
<term>Enfant</term>
<term>Enfant d'âge préscolaire</term>
<term>Facteurs temps</term>
<term>Flambées de maladies</term>
<term>Grippe humaine ()</term>
<term>Grippe humaine (immunologie)</term>
<term>Grippe humaine (transmission)</term>
<term>Grippe humaine (épidémiologie)</term>
<term>Humains</term>
<term>Modèles statistiques</term>
<term>Nourrisson</term>
<term>Prévision</term>
<term>Québec (épidémiologie)</term>
<term>Reproductibilité des résultats</term>
<term>Santé publique ()</term>
<term>Santé publique (tendances)</term>
<term>Simulation numérique</term>
<term>Sujet âgé</term>
<term>Sujet âgé de 80 ans ou plus</term>
<term>Vaccination</term>
<term>Vaccins antigrippaux (administration et posologie)</term>
<term>Virus de la grippe A (immunologie)</term>
<term>Virus de la grippe A (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Influenza Vaccines</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Quebec</term>
</keywords>
<keywords scheme="MESH" qualifier="administration et posologie" xml:lang="fr">
<term>Vaccins antigrippaux</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Grippe humaine</term>
<term>Virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Influenza A virus</term>
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Public Health</term>
</keywords>
<keywords scheme="MESH" qualifier="tendances" xml:lang="fr">
<term>Santé publique</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="trends" xml:lang="en">
<term>Public Health</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Grippe humaine</term>
<term>Québec</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adolescent</term>
<term>Adult</term>
<term>Aged</term>
<term>Aged, 80 and over</term>
<term>Child</term>
<term>Child, Preschool</term>
<term>Computer Simulation</term>
<term>Disease Outbreaks</term>
<term>Forecasting</term>
<term>Humans</term>
<term>Infant</term>
<term>Middle Aged</term>
<term>Models, Statistical</term>
<term>Reproducibility of Results</term>
<term>Time Factors</term>
<term>Vaccination</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adolescent</term>
<term>Adulte</term>
<term>Adulte d'âge moyen</term>
<term>Enfant</term>
<term>Enfant d'âge préscolaire</term>
<term>Facteurs temps</term>
<term>Flambées de maladies</term>
<term>Grippe humaine</term>
<term>Humains</term>
<term>Modèles statistiques</term>
<term>Nourrisson</term>
<term>Prévision</term>
<term>Reproductibilité des résultats</term>
<term>Santé publique</term>
<term>Simulation numérique</term>
<term>Sujet âgé</term>
<term>Sujet âgé de 80 ans ou plus</term>
<term>Vaccination</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS AND FINDINGS</b>
</p>
<p>We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998-1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive ability.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23755236</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Predictive validation of an influenza spread model.</ArticleTitle>
<Pagination>
<MedlinePgn>e65459</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0065459</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread.</AbstractText>
<AbstractText Label="METHODS AND FINDINGS" NlmCategory="RESULTS">We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998-1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive ability.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hyder</LastName>
<ForeName>Ayaz</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, McGill University, Montreal, Quebec, Canada. ayaz.hyder@yale.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Buckeridge</LastName>
<ForeName>David L</ForeName>
<Initials>DL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Leung</LastName>
<ForeName>Brian</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D023361">Validation Study</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000293" MajorTopicYN="N">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000369" MajorTopicYN="N">Aged, 80 and over</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002675" MajorTopicYN="N">Child, Preschool</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="Y">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005544" MajorTopicYN="N">Forecasting</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007223" MajorTopicYN="N">Infant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="N">Influenza Vaccines</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="Y">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011634" MajorTopicYN="N">Public Health</DescriptorName>
<QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName>
<QualifierName UI="Q000639" MajorTopicYN="Y">trends</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011792" MajorTopicYN="N" Type="Geographic">Quebec</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014611" MajorTopicYN="N">Vaccination</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>04</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>04</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23755236</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0065459</ArticleId>
<ArticleId IdType="pii">PONE-D-12-11383</ArticleId>
<ArticleId IdType="pmc">PMC3670880</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2010;5(4):e10036</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20418945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2011;7(2):e1001076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21347316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 1981 Mar;113(3):215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6258426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Eng Online. 2011;10:15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21324153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jul 27;442(7101):448-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16642006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Oct 30;326(5953):729-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19745114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Recomm Rep. 2007 Jul 13;56(RR-6):1-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17625497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(3):e1790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18335060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e20743</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21677774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2011 Jul 12;366(1573):2045-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21624924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2007 Apr;135(3):372-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2011 Sep;7(9):e1002205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21980281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2011 Jan 15;173(2):127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21081646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Feb 19;457(7232):1012-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19020500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Recomm Rep. 2006 Jul 28;55(RR-10):1-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Comput Model. 2008;48(5-6):929-939</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19122846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Public Health. 2010;10:710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21087466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2011 Jul;8(7):e1001051</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21750666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2010 Nov 29;28(51):8132-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20950727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 20;300(5627):1961-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2009;9:129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Inform. 2011 Apr;44(2):221-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20951829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4639-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18332436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Epidemiol. 2011 Mar;26(3):183-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21153911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Value Health. 2001 Sep-Oct;4(5):348-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11705125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 21;312(5772):447-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Sep 8;437(7056):209-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16079797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2007 Jan 15;44(2):272-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17173231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med. 2007;5:34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18031574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Health Geogr. 2009;8:50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2010 Jun;138(6):825-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19919730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 1;316(5829):1298-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jun;81(11):5429-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(4):e10187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20419169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transl Res. 2008 Jun;151(6):275-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18514138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Math Biol. 2006 Nov;68(8):1893-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Health Care Manag Sci. 2004 May;7(2):127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15152977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Epidemiol. 2011 Jul;26(7):583-4; author reply 584</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21779852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2011;11:115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21554680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemics. 2011 Mar;3(1):19-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21339828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Curr. 2009 Nov 11;1:RRN1129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20029667</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Québec</li>
</region>
<settlement>
<li>Montréal</li>
</settlement>
<orgName>
<li>Université McGill</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Buckeridge, David L" sort="Buckeridge, David L" uniqKey="Buckeridge D" first="David L" last="Buckeridge">David L. Buckeridge</name>
<name sortKey="Leung, Brian" sort="Leung, Brian" uniqKey="Leung B" first="Brian" last="Leung">Brian Leung</name>
</noCountry>
<country name="Canada">
<region name="Québec">
<name sortKey="Hyder, Ayaz" sort="Hyder, Ayaz" uniqKey="Hyder A" first="Ayaz" last="Hyder">Ayaz Hyder</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/GrippeCanadaV3/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000333 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000333 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    GrippeCanadaV3
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23755236
   |texte=   Predictive validation of an influenza spread model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23755236" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrippeCanadaV3 

Wicri

This area was generated with Dilib version V0.6.35.
Data generation: Tue Jul 7 13:36:58 2020. Site generation: Sat Sep 26 07:06:42 2020